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ABSTRACT 

The perspectives of multiple launchings, in the near future, by INPE's satellite 
program motivated the development of an application using temporal planning 
techniques based on Artificial Intelligence (AI) concepts. It will be used for automatic 
generation of flight operation plans to control satellite activities. However, making a 
critical analysis of these plans before real execution is impossible. We proposed a 
different approach using a decision support tool combining Bayesian Networking and 
AI-based data mining techniques for data prediction, aiming to maintain the integrity 
of the satellite. 

 

1. Introduction 
 
There is general interest in automating satellite control operations related to the task 
of controlling multiple satellites in INPE ´s Space Program. In addition, it is generally 
accepted that the automation of satellite control activities represents a way of 
reducing in-orbit satellite maintenance costs. At INPE, autonomous systems to 
control satellite operations employing Artificial Intelligence are being developed to 
automate ground segment operations. 
 
However, this increased autonomy in satellite control operations can lead to distrust 
of the automatic control system behavior as compared to that of the well known and 
routine manual control system. In such cases, these systems still require an 
improvement in reliability to become operational. 
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In order to achieve this breakthrough in reliability, predictability and safety is 
presented an AI-based strategy for validation of a flight operation plan, which may be 
manually or automatically generated by a planner. This is an architecture composed 
of software components, resulting from the combination of verification and validation 
techniques. As a relevant part of this strategy, a decision support tool is proposed in 
this article, to assist experts in evaluating the actions of the plan, aiming at 
guaranteeing the integrity of the satellite. This tool consists of software using Artificial 
Intelligence techniques aimed at predicting the satellite future states, evaluating the 
telemetries and parameters of the power supply subsystem, directly affected by the 
actions contained in each flight operation plan. 
 
This paper presents in the following section some concepts related to the automation 
of the control activities of the satellite in orbit. Section 3 describes the strategy for 
validation of a flight operation plan, an overview of the software architecture and the 
tool proposed for validation. Section 4 discusses some data mining techniques of 
classification for data prediction to design the tool. Section 5 presents a comparative 
study of performance between classifiers algorithms to determine the classification 
model that provides greater accuracy to predict satellite future states. Conclusions 
are presented in Section 6. 
 
 
2. Satellite Flight Operation Plan 
 
The flight operation plan includes the planning of control operations of space 
missions and ground segment activities for the planning, execution and control of the 
satellite in orbit. Each flight operation plan aims to maintain the satellite in orbit, 
working to achieve the goals of the mission, containing all the necessary information 
to control the satellite in orbit, such as: procedures for flight control, procedures for 
recovery of contingencies, rules, plans and schedules. All activities included in a 
flight operation plan have as their starting point the passage of the satellite over the 
Earth station. The amount of time that a satellite is visible to a given Earth station 
determines the set of flight operations that should be performed during each pass.  
 
Among the activities to control for this period is the sending of commands from the 
ground (telecommand), and the reception of telemetry which indicates the general 
state of the satellite. 
 
To meet the growing demand for satellites in orbit and reduce costs significantly, 
recent studies in AI-based planning have been aimed at the development of tools 
that automate the tasks of controlling ground operations in INPE. The system called 
Intelligent Planning of Flight Operation Plans (PlanIPOV) [Cardoso et al. 2006], uses 
temporal planning AI techniques (temporal planner) applied to the automatic 
generation of flight operation plans to support the activities of controlling satellites in 
orbit. 
 
At the same time, the use of automatically generated flight operation plans leads to 
many doubts. These are partly related to the new technologies involved, but the 
greatest resistance is related to reliability in the execution of these actions and the 
predictability and safety of satellites. This increase in autonomy can lead to suspicion 
about the behavior, often well known and routine. The set of actions contained in a 
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plan acts directly on data critical to maintenance of the satellite integrity. 
Furthermore, depending on the demand for satellites in orbit, a careful validation of 
these plans can become unviable. 
 
 
3. Strategy for Validation of Flight Operations Plan 
 

The strategy of validation consists of an architecture composed of several software 
components for validation of a flight operation plan to be executed in simulation, 
before actual execution (Figure 1). It is designed on the basis of appropriate 
assurance techniques for space systems [Blanquart et al. 2004]. 
 

 

 

 

Figure 1. Validation of Flight Operation Plan: architecture and situation. 

 
Through an execution off-line of the generated plan by the planner, each action of the 
plan is executed and a simulation of the behavior of the satellite is performed by a 
satellite simulator. The simulator is based on a virtual satellite, with simplified models, 
which is also part of the strategy for validation of the generated plan [Tominaga et al. 
2009]. 
 
The simulator returns to a tool called the Diagnosis Generator, parameters and 
telemetries (see section 2) containing the simulated state of the satellite, resulting 
from the execution of the plan’s actions. As a study case, a simplified model of 
telemetries, parameters and operational limits of the power supply subsystem of a 
virtual satellite XSAT is being used. The power supply is a critical subsystem for the 
satellite integrity [Tominaga et al. 2009]. The tables 1, 2, 3, 4 and 5 below present a 
description of these XSAT parameters and telemetries used as input data for 
Diagnosis Generator: 
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Table 1. XSAT mission operations summary. 

 
Payload Description Payload data Data receiving 

station 
Operation criteria Power 

Consumption 

PL1 Optical 
Camera 

Satellite 
imagery for 
land surface 
monitoring 

Image receiving 
station 

Over station, at 
sunlight or at night if 
calibration 
requested  

PPL1 
ON = 800 W 
OFF = 100 W 

PL2 Data 
Collection 
Subsystem 

Environmental 
data acquired 
by data 
collection 
platforms 

Data collection 
station 

Over station or 
continuous, at 
sunlight and eclipse 

PPL2 
ON = 15 W 
OFF = 5 W 

 

 

Table 2. XSAT Power Supply Subsystem parameters. 

 
Identifier Description Identifier Description 

SAG Solar Array Generator PAV Power Available to the Satellite 

PSAG SAG Power IBAT BAT Charging Current 

BAT Battery VBAT BAT Voltage 

QBAT BAT Charge DOD BAT Depth-Of-Discharge 

 

 

Table 3. XSAT power values. 

 

Onboard Status Description Generated Power (W) Consumed Power (W) 

SAG  SUN 
Sunlight - Sun Illuminated 
Phase 1600 0 

 ECL Eclipse - Eclipse Phase 0 0 

PL1  ON PL1 Operating 0 800 

 OFF PL1 Standby 0 100 

PL2  ON PL2 Operating 0 15 

 OFF PL2 Standby 0 5 

SM  - Service Module  0 780 

 

 

Table 4. XSAT Power consumed in each operation mode. 

 
Operation Mode 
(defined in the 

plan) 

Onboard Status Power (W) 

SAG PL1 PL2 SM Consumed Generated Available 

A SUN ON ON - 1595 1600 5 

B SUN ON OFF - 805 1600 795 

C SUN OFF ON - 115 1600 1485 

D SUN OFF OFF - 885 1600 715 

E ECL ON ON - 1595 0 -1595 

F ECL ON OFF - 1585 0 -1585 

G ECL OFF ON - 895 0 -895 

H ECL OFF OFF - 885 0 -885 
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Table 5. XSAT battery DOD control criteria. 

 
DOD (%) DOD Status  Operation Status 

< 15 Low Safe 

15 ~ 20 High UnSAFE 

> 20 EXTREME Forbidden 

 

 
Upon receiving the data from the XSAT virtual satellite PSS model due to an 
implementation of the plan’s actions, the Diagnosis Generator tool provides 
prediction from these parameters and telemetries, generating prognosis of the 
satellite states indicating how the general state of the satellite will evolve, indicating 
the impact of the plan in the security level of the satellite operation status. 
 
 
4. Techniques for Data Prediction 
 
Computational prediction models are based on probabilistic reasoning over time, 
interpreting the present and understanding the past and future forecast [Russell and 
Norvig 2005]. Prediction is one of the basic inference tasks in time models, in which 
the posterior distribution on the future state is calculated, given all the evidence to 
date. Predictive models have been widely used for building tools to support decision 
making. 
 
Data mining is a method, in which the ultimate goal is prediction, and represents a 
process developed to examine routinely large amounts of data collected in search of 
consistent patterns and/or systematic relationships between variables. Techniques 
for finding and describing structural patterns in data have developed within a field 
known as machine learning, where different styles of learning appear, depending on 
the data mining application. Those applications where the predictive model requires a 
judgment needed to inform future decisions, a classification learning scheme takes a 
set of classified examples (training data) from which it is expected to learn a way of 
classifying unseen examples (test data) [Frank et al. 2009]. 
 
A classification technique (or classifier) is a systematic approach to building 
classification models from an input data set. Each technique employs a learning 
algorithm to identify a model that best fits the relationship between the attribute set 
(input) and class label (output) of the input data. The model generated by a learning 
algorithm should both fit the input data well and correctly predict the class labels of 
records it has never seen before. Therefore, a key objective of the learning algorithm 
is to build models with good generalization capability; i.e., models that accurately 
predict the class labels of previously unknown records [Tan et al. 2005]. We 
approach the classical techniques of classification, including decision tree classifiers, 
Bayesian classifiers and neural networks. 
 
Following the general approach to solving a classification problem, it was used as a 
case study, a training data; i.e., a dataset with 156 records (instances) of classified 
examples (Table 6). These input data consist on attribute set of telemetries, 
parameters and operational limits of a simplified model of a Power Supply 
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Subsystem (PSS) [Tominaga et al. 2009], based on a virtual satellite (see section 3), 
as a result of the action set of a flight operation plan. Each data record is associated 
with classification of satellite security levels SAFE2 and SAFE3 (STATE class label). 
For this input data was applied a classifier algorithm, representing each classical 
classification learning scheme, which each algorithm produces a classification model. 

 
Table 6. Input data from the virtual satellite XSAT. 

 

 
 
 
The method used to handle the input data for all classifiers algorithm was one of the 
methods to random subsampling called cross-validation. We used the 10-fold cross-
validation, which the data was segmented into 10 equal-sized partitions. During each 
run, one of the partitions is chosen for testing, while the rest of them are used for 
training. This procedure is repeated 10 times so that each partition is used for test 
exactly once. 
 
As mentioned in a section 3, the Diagnosis Generator tool should be able to generate 
data prediction for this satellite subsystem considered critical, based on the 
classification model that provides greater accuracy to predict satellite future states. 
So, aiming to provide adequate reasons, the following sections present the main 
features of these classifiers and associated algorithms used to build the classification 
models for the Diagnosis Generator tool. 
 
 

4.1 Decision Tree Classifiers 
 
A decision tree classifier, which is a simple yet widely used classification technique 
also known as decision tree induction, derives from the simple divide-and conquer 
algorithm for producing decision trees [Witten and Frank 1999]. A decision tree 
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includes the root and others internal nodes, contain attribute test conditions to 
separate records that have different characteristics. 
 
A decision tree classification learning algorithm was applied to dataset (Table 6) to 
generate the decision tree model for classification of the satellite state. The algorithm 
chosen for building the decision tree was a well known and frequently used over the 
years the C4.5 and J48 as a class for generating a pruned or unpruned C4.5 decision 
tree [Witten and Frank 1999]. 
 
The output of classification learning algorithm J48, indicating a pruned decision tree 
model for the training set used with only 2 (SAFE2 and SAFE3) leaf nodes 
classification of states (STATE class label). Furthermore, the resulting tree model 
indicates that the telemetry related with the battery voltage (VBAT) (See section 3) is 
critical to classify the security level of the satellite operation status. The Figure 2 
shows the decision tree classification model generated used to prognosis of the 
satellite state for unknown values in a new data record (record test). 
 

 

 

Figure 2. Classification model based in decision tree applied a test record. 

 

 

4.2 Bayesian Classifiers 
 

Following a different approach, we consider the relationship between the attribute set 
and the class variable being non-deterministic. In other words, it is when the class 
label of a test record cannot be predicted with certainty, even though its attribute set 
is identical to some of the training examples (see Figure 2). For solving these 
classification problems, an approach based on the Bayes theorem is used for 
modeling probabilistic relationships between the attribute set and the class variable. 
Consist in a statistical principle for combining prior knowledge of the classes with new 
evidence gathered from data. 

)(

)()|()|(

XP

YPYXPXYP 
  (1) 

 
Describing how the Bayes theorem was used for classification, let us formalize the 
classification problem from a statistical perspective. Let X denotes the attribute set 
and Y denote the class variable. If the class variable has a non-deterministic 
relationship with the attributes, then we can treat X and Y as random variables and 
capture their relationship probabilistically using P(Y|X). This conditional probability is 
also known as the posterior probability for Y, as opposed to its prior probability, P(Y) 



 

9 
 

(see equation 1). During the training phase, it need to learn the posterior probabilities 
P(Y|X) for every combination of X and Y based on information gathered from the 
training data [Tan et al. 2005]. 
 
The classifier algorithm used to implementation of this model was a naive Bayes 
classifier [Frank et al. 2009], which works using for classification each test record 
from training data (Table 6), needed to compute the posterior probabilities 
P(SAFE2|X) and P(SAFE3|X) based on the prior probability obtained for class 
SAFE3 (P(SAFE3)=67%) and the prior probability for class SAFE2 (P(SAFE2)=33%). 
 
So, the classification is based on the result of the condition: if P(SAFE3|X) > 
P(SAFE2|X), then the record is classified as SAFE3; otherwise, it is classified as 
SAFE2. 
 
 
4.3 Artificial Neural Networks 
 
Analogous to human brain structure, an Artificial Neural Networks (ANN) is 
composed of an interconnected assembly of nodes and directed links. Consist on set 
of individual processing elements (formal neurons), grouped under diverse topologies 
and governed by mathematical procedures clustering vectors, discrete optimization, 
minimizing errors and others [Haykin 2001]. 
 
Following one more different approach to build a classification model, we became 
interested in models of artificial neural networks for classification, because it is a non-
parametric and non-linear technique, which allows the mapping of input data 
associated with output data. Therefore, the output of the network is the class 
associated to the sample. 
 
For representing a model of artificial neural networks for classification, we chose 
Networks LVQ (Learning Vector Quantization), which define a family of adaptive 
algorithms for quantifying vector, originally proposed by Kohonen. LVQ networks 
define methods for supervised training employing a self-organizing network approach 
which uses the training vectors to recursively tune placement of competitive hidden 
units that represent categories of the inputs. Once the network is trained, an input 
vector is categorized as belonging to the class represented by the nearest hidden 
unit [Haykin 2001]. 
 
The classifier algorithm used to implementation of LVQ networks was the LVQ2_1 
classifier algorithm [Frank et al. 2009]; it consists on iterative algorithm, whose basic 
principle is to reduce the distance of the input vectors in the same class, and to move 
away input vector in the wrong class. The classes distribution obtained as output 
were SAFE3: 16 (80%) and SAFE2: 4 (20%) for the input vectors representing 12 
attributes. 
 
In the next section, a performance evaluation of each classification model generated 
and comparison between three classifiers is accomplished based on performance 
metrics such as Accuracy and Error rate values, being the results presented and 
discussed. 
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All the classifiers algorithms used are an integral part of the Waikato Environment for 
Knowledge Analysis (WEKA), a suite of machine learning software written in Java 
[Frank et al. 2009]. WEKA is free software available under the GNU General Public 
License, aiming at adding algorithms from different approaches in the sub-area of 
Artificial Intelligence, dedicated to the study of learning by machines [Witten and 
Frank 1999]. 
 
 
5 Results and Discussion 
 

Performance evaluation of a classification model is based on the counts of test 
records correctly and incorrectly predicted by the model. These counts are tabulated 
in a table know as confusion matrix. The Table 7 depicts the confusion matrix of 
classifiers: J48, naive Bayes and LVQ2_1. 

 

Table 7. Confusion matrix of tree classifiers: J48, naive Bayes, lvq2_1. 

 
J48 Class = SAFE3 Class = SAFE2 Total 

Class = SAFE3 eii = 99 eij = 6 105 

Class = SAFE2 eji = 8 ejj = 43 51 

Total 107 49 156 

NAIVE BAYES Class = SAFE3 Class = SAFE2 Total 

Class = SAFE3 eii = 99 eij = 6 105 

Class = SAFE2 eji = 2 ejj = 49 51 

Total 101 55 156 

LVQ2_1 Class = SAFE3 Class = SAFE2 Total 

Class = SAFE3 eii = 96 eij = 9 105 

Class = SAFE2 eji = 12 ejj = 39 51 

Total 108 48 156 

 
 
Each entry eij in the Table 7 denotes the number of records from class SAFE3 
predicted to be class SAFE2. For instance, eji is the number of records from class 
SAFE2 predicted incorrectly predicted as SAFE3. Thus, based on the entries in the 
confusion matrix, the total number of correct predictions and total number of incorrect 
predictions of each model was calculated and presented on Table 8. From these 
matrix elements is possible also get the performance metrics such as accuracy for 
each model and the error rate values (Table 8). 
 
Most classification algorithms seek models that attain the highest accuracy, or 
equivalently, the lowest error rate. Then, evaluating in terms of percentages, the 
accuracy and error rate values for each classifier, we can say that the classifier naive 
Bayes shows the better accuracy value (95%) and minor error rate (5%) followed of 
the decision tree classifier (91%) and (9%). The worse accuracy and error rate 
associated was the neural classifier LVQ2_1 (86%) and (13%). 
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Table 8. Accuracy and Error rate performance metrics for each classifier. 

 
Classifiers Accuracy (%) Error rate (%) 

J48 91.02 8.97 

NAIVE BAYES 94.87 5.13 

LVQ2_1 86.53 13.46 

 

 
Other key measure for evaluating classifiers is Kappa statistics or Kappa coefficient. 
A measure of agreement used in nominal scale, that gives us an idea of how much 
the observations deviate from those expected due to chance, giving us so how 
legitimate interpretations are. This observer disagreement is indicated by how 
observers classify individual subjects into the same category on the measurement 
scale. During in run, each classifier assigned items to one of 2 classes SAFE3 and 
SAFE2, but the number of individuals assigned to each class by classifier are 
disagree (see Table 7). 
 
The values of Kappa are interpreted as the maximum of 1 when agreement is 
perfect, 0 when agreement is no better than chance and negative values when 
agreement is worse than chance. Other values can be roughly interpreted as 
[Sheskin 2003]: 
 

 Poor agreement = Less than 0.20 

 Fair agreement = 0.21 to 0.40 

 Moderate agreement = 0.41 to 0.60 

 Good agreement = 0.61 to 0.80 

 Very good agreement = 0.81 to 1.00 
 

 
Kappa measures the percentage of data values in the main diagonal of the confusion 
matrix (Table 7) and then adjusts these values for the amount of agreement that 
could be expected due to chance alone. In Table 9, the kappa coefficient values of 
each classifier are reported and interpreted. 
 

Table 9. Kappa coefficient values provided by the three classifiers. 

 
Classifiers Kappa Agreement 

J48 0.7940 Good 
NAIVE BAYES 0.8858 Very good 

LVQ2_1 0.6894 Good 

 

 

The Kappa coefficient value obtained of naïve Bayes classifier presented a perfect 
agreement, while the others classifiers present a good agreement. Overall, the 
classifier algorithm naive Bayes showed better results, indicating the Bayesian 
method as the best classification model generated to predict satellite future states. 
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6 Conclusion 
 
This paper presented a comparative study of performance between classifiers 
algorithms used in data prediction to determine the classification model that provides 
greater accuracy to predict satellite future states. The classification model consist on 
the design of a prediction tool, that is being developed as a relevant part of the 
validation strategy for a flight operation plan generated to control and track satellites.  
 
The tool performs data prediction of a critical platform subsystem, directly affected by 
the actions contained in each satellite flight plan. In addition, the tool assists experts 
in impact analysis of each plan’s action on the satellite behavior, suggesting the 
adoption or rejection of the plan. 
 
The most significant contribution of the Diagnosis Generator tool is related to the 
possibility of evaluating the impact of the plan from simulated satellite states, when 
integrated with the simulator or from real data to decision support making, providing 
effective support to experts, and representing an advance in reliability, predictability 
and safety of the satellite control activities, especially considering multiple launchings 
planned for the near future, when a careful evaluation of these plans, before real 
execution would be impossible. 
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